
https://doi.org/10.1007/s10664-020-09878-9

On the time-based conclusion stability of cross-project
defect prediction models

Abdul Ali Bangash1 ·Hareem Sahar1 ·Abram Hindle1 ·Karim Ali1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Researchers in empirical software engineering often make claims based on observable data
such as defect reports. Unfortunately, in many cases, these claims are generalized beyond
the data sets that have been evaluated. Will the researcher’s conclusions hold a year from
now for the same software projects? Perhaps not. Recent studies show that in the area of
Software Analytics, conclusions over different data sets are usually inconsistent. In this
article, we empirically investigate whether conclusions in the area of cross-project defect
prediction truly exhibit stability throughout time or not. Our investigation applies a time-
aware evaluation approach where models are trained only on the past, and evaluations are
executed only on the future. Through this time-aware evaluation, we show that depending on
which time period we evaluate defect predictors, their performance, in terms of F-Score, the
area under the curve (AUC), and Mathews Correlation Coefficient (MCC), varies and their
results are not consistent. The next release of a product, which is significantly different from
its prior release, may drastically change defect prediction performance. Therefore, without
knowing about the conclusion stability, empirical software engineering researchers should
limit their claims of performance within the contexts of evaluation, because broad claims
about defect prediction performance might be contradicted by the next upcoming release of
a product under analysis.

Keywords Conclusion stability · Defect prediction · Time-aware evaluation

Communicated by: Romain Robbes

� Abdul Ali Bangash
bangash@ualberta.ca

Hareem Sahar
hareeme@ualberta.ca

Abram Hindle
abram.hindle@ualberta.ca

Karim Ali
karim.ali@ualberta.ca

1 Department of Computing Science, University of Alberta, Edmonton, AB, Canada

Empirical Software Engineering (2020) 25:5047–5083

Published online: 9 September 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09878-9&domain=pdf
http://orcid.org/0000-0001-6972-1664
mailto: bangash@ualberta.ca
mailto: hareeme@ualberta.ca
mailto: abram.hindle@ualberta.ca
mailto: karim.ali@ualberta.ca

1 Introduction

Defect prediction models are trained for predicting future software bugs using historical
defect data available in software archives and relating it to predictors such as structural
metrics (Chidamber and Kemerer 1994; Martin 1994; Tang et al. 1999), change entropy
metrics (Hassan 2009), or process metrics (Mockus andWeiss 2000). The accuracy of defect
prediction models is estimated using defect data from a specific time period in the evolution
of software, but the models do not necessarily generalize across other time periods.

Conclusion stability is the property that a conclusion, i.e., the estimate of performance,
remains stable as contexts, such as time of evaluation, change. For example, if the con-
clusion of a current evaluation of a model on a software product is the same as that of
an evaluation done a year ago, then we consider that conclusion to be stable. A lack of
conclusion stability would be if the model’s performance is inconsistent with itself across
time. Instead of over generalizing our conclusions beyond the period of evaluation, if we
claimed the model’s performance was within the period of evaluation, our claim would
still hold.

Prior work (Lessmann et al. 2008; Menzies et al. 2010; Turhan 2012) examined vari-
ous factors affecting the conclusion stability of defect prediction models. However, none
explored the conclusion stability across time. The goal of this paper is to investigate
conclusion stability of cross-project defect prediction models (trained and tested using
data from different projects) and understand how their performance estimates, measured
using F-Score, Area under the Curve (AUC), Matthews Correlation Coefficient (MCC),
and G-measure vary across different time periods. In our evaluation, we carefully con-
sider the time-ordering of versions and ensure our models do not involve time-travel.
Time-travel is a colloquial term to describe models that should be time sensitive but
are trained on future knowledge that should not be known for predicting defects in the
past.

Existing defect prediction studies fail to avoid time-travel because of the choice of a
cross-validation evaluation methodology which,

1) Randomly splits data into partitions and uses these partitions for training and testing,
irrespective of the chronological order of data.

2) Reports the mean performance metrics without specifying the evaluated time period,
and assumes the performance generalizes over all time periods.

The main drawback of this methodology is that the defect prediction models often get
trained on future data which is not available, in reality, at the time of training. For exam-
ple, due to cross-validation, a version released in 2010 may be used for training a model
that predicts defects for a version released in 2009. This situation is explained in Table 1
that shows a cross-validation evaluation for three software releases (i, j, k), each from
three different projects, released between 2008 and 2010. The table shows that not all
Training (Tr) and Test combinations are realistic for building defect prediction models, as
some will lead to models that are time insensitive (trained on future data). For instance,
a case where Tr set = {j} and Test set = {i}, the evaluation seemingly have engaged in
time-travel.

Rakha et al. (2018) refer to such evaluation as classical evaluation, whereas Hindle and
Onuczko (2019) call it time-agnostic. Many claim that ignoring time provides highly unre-
alistic performance estimates (Tan et al. 2015; Rakha et al. 2018; Hindle and Onuczko
2019), yet, there are several just-in-time based approaches that only consider release order
for within project defect prediction (Huang et al. 2017; Yang et al. 2016), but engage in

Empirical Software Engineering (2020) 25:5047–50835048

Table 1 An example illustrating three cross-validation settings (a=1/1, b=2/1, c=1/2) of three releases of
different projects over a period of three years (i-2008, j-2009, k-2010)

Cross Validation Training/Test

Training set Test set Time-travel

{i-2008} {j-2009} ✗

{i-2008} {k-2010} ✗

{j-2009} {i-2008} ✓

{j-2009} {k-2010} ✗

{k-2010} {i-2008} ✓

{k-2010} {j-2009} ✓

(a) Cross-validation (1/1) having 1 release in Training set and 1 release in Test set

{i-2008, j-2009} {k-2010} ✗

{j-2009, k-2010} {i-2008} ✓

{k-2010, i-2008} {j-2009} ✓

(b) Cross-validation (2/1) having 2 releases in Training set and 1 release in Test set

{i-2008} {j-2009, k-2010} ✗

{j-2009} {i-2008, k-2010} ✓

{k-2010} {i-2008, j-2009} ✓

(c) Cross-validation (1/2) having 1 release in Training set and 2 releases in Test set

time-travel in cross project defect prediction settings (Yang et al. 2016; Kamei et al. 2016;
Yang et al. 2015).1

In this paper, we evaluate five cross-project defect prediction approaches using the pub-
licly available Jureczko dataset (Jureczko and Madeyski 2010), and show that data from
different time periods leads to varying conclusions. In our evaluation, we strictly consider
the chronological order of data and propose four generic time-aware configurations that
can be used to split the data set into training and testing. The purpose of proposing these
configurations is to make the experiment performance-wise scalable for evaluating other
approaches in which running all possible Tr-Test set combinations is expensive, such as
duplicate bug reports retrieval involving extensive string matching (Hindle and Onuczko
2019).

Our results indicate that the evaluated cross-project defect prediction approaches do not
have perfect stability in their conclusions and time-travel produces false estimates of per-
formance. Therefore, while conducting defect prediction studies, researchers should not
engage in time-travel and also avoid over generalizing their conclusions, but instead couch
the claims of performance within the contexts of evaluation. To summarize, the main
contributions of this paper are:

– A methodology for time-aware evaluation of defect prediction approaches;

1Yang et al. (2015) used 10-fold cross-validation in their study. On the other hand, Yang et al. (2016) used
time-wise cross-validation for within-project models, however, in cross-project prediction they trained on
one project and tested on another project without ordering the data set time-wise. Kamei et al. (2016) trained
JIT cross-project models using the data from one project and tested the prediction performance using the data
from every other project, irrespective of their time order.

Empirical Software Engineering (2020) 25:5047–5083 5049

– A case study of conclusion stability in cross-project defect prediction with respect to
time;

– A comparison of the performance rankings of five cross-project defect prediction
approaches using time-aware evaluation with performance of time agnostic evaluation;

– Guidelines for researchers and practitioners for the time-aware evaluation of defect
prediction models.

2 RelatedWork

Software defect prediction has a plethora of approaches with the earliest proposals dat-
ing back to the 1990s where linear regression models based on Chidamber and Kemerer
(CK) metrics (Chidamber and Kemerer 1994) were used to determine the fault proneness
of classes (Basili et al. 1996). A number of metrics have been used since then as indica-
tors of software quality such as previous defects (Zimmermann et al. 2007), process metrics
(Hassan 2009; Rahman and Devanbu 2013), and churn metrics (Nagappan and Ball 2005).
Within project defect prediction (WPDP) uses data from the same project for training and
testing whereas in cross project defect prediction (CPDP), training and testing data comes
from different projects. Several approaches for both WPDP (Turhan et al. 2009; Basili et al.
1996) and CPDP (Zimmermann et al. 2009; Peters et al. 2013; Nam et al. 2013) are available
in the literature. There have also been benchmark studies on both types of defect prediction
(D’Ambros et al. 2012; Herbold et al. 2018). WPDP approaches have better performance
while CPDP approaches are likely transferable to other projects with certain limitations
(Zhang et al. 2014). Herbold (2017b) conducted a systematic mapping of defect prediction
literature with a focus on cross project defect prediction approaches. They identified that
the results of studies are not comparable due to the lack of use of common data sets and
experimental setups.

In their follow up work, Herbold et al. (2018) replicated 24 defect prediction approaches
using 5 publicly available data sets and multiple learners. Their goal was to benchmark the
defect prediction approaches using common data sets and metrics so that state-of-the-art
approaches can be ranked according to their performance using Area under Curve (AUC),
F-Score, G-measure, and Matthews Correlation Coefficient (MCC) metrics. Jureczko
(Jureczko and Madeyski 2010) is one of the well-known defect prediction data sets which
was also used in the benchmarking study. It originally contains open-source, proprietary and
academic projects but Herbold et al. (2018) used only 62 versions of several open-source
and academic projects.

Prior to this paper, conclusion stability has been analyzed by several researchers. Less-
mann et al. (2008) and Menzies et al. (2010) investigated the effect of classifiers, trained
using same data, on the quality of prediction models whereas Ekanayake et al. (2012) and
Ekanayake et al. (2009) investigated the effect of data set and concept drift respectively.
Lessmann et al. (2008) found statistically significant difference among the performance of
two classifiers and Menzies et al. (2011) observed inconsistent conclusions for different
clusters within the same data. Inspired by this prior work, another set of experiments were
conducted by D’Ambros et al. (2012) to rank approaches across several data sets following
a statistically sound methodology. McIntosh and Kamei (2017) investigated the time-based
conclusions of just-in-time defect prediction models and found that their descriminatory
power can change over time. In more recent work, Tantithamthavorn et al. (2018) concluded
that parameter optimization can significantly impact the performance stability, and ranking

Empirical Software Engineering (2020) 25:5047–50835050

of defect prediction models. This view is similar to Menzies’ view who argued that a learner
tuned to a particular evaluation criterion, performs best for that criterion, hence it shall be
critically chosen (Menzies et al. 2010).

Tantithamthavorn et al. (2015) in their work show that issue report mislabelling signifi-
cantly impacts the defect prediction models. In a later comparison study, Tantithamthavorn
et al. (2017) concluded that the choice of model validation technique for defect prediction
models can also affect performance results. Tan et al. (2015) identified that cross-validation
produces false precision results for change classifications and addressed the problem using
time-sensitive and online change classifications. Their emphasis is on removing imbalances
in data using re-sampling techniques for better change classifications. Turhan (2012) also
studied the conclusion instability caused due to data set shift but their focus was not specific
to defect prediction, rather on software engineering prediction models in general. Simi-
larly (Krishna and Menzies 2018) show that there can be large differences in conclusions
depending on different source data sets and suggest mitigating the problem with the help of
bellwethers. Bellwethers seem to restrain instability but based on the results of our study,
we consider it of utmost importance to keep regard of time while finding out the bellwether
project. However, we believe this work complements our work.

Time-agnostic evaluation has been criticized as unrealistic by Hindle and Onuczko
(2019) who argue that the results based on a time-agnostic evaluation might not be appli-
cable to any real-world context. Yang et al. (2016) hold a similar view and motivated
by Śliwerski et al. (2005a) they adopted a time-wise cross-validation within projects for
evaluating the prediction effectiveness of unsupervised models. However, in their cross-
project defect prediction setting, they seem to be time travelling again. Instead of using their
approach we propose four time-aware configurations to avoid discarding some of the valid
models that time-wise cross-validation will not generate. Jimenez et al. (2019) assessed the
impact of disregarding temporal constraints on the performance of vulnerability prediction
models and found that the otherwise highly effective and deployable results quickly degrade
to an unacceptable level when realistic information is considered. Their work is limited to
the prediction of vulnerabilities though, which are just a subset of defects. (Rakha et al.
2018) also claim that time-agnostic evaluation overestimates performance. They argue that
the range of performance estimates, rather than a single value should be reported.

3 Methodology

In this section, we explain a time-aware evaluation methodology that we follow for building
the cross-project defect prediction models that do not engage in time travel. To avoid time-
agnostic evaluation in future, researchers can employ this proposed methodology for the
evaluation of their defect prediction techniques.

3.1 Select Techniques to Evaluate

The first step is to select techniques for validation, and these can either be newly pro-
posed techniques or existing defect prediction proposals. In general, defect prediction
techniques can be selected from a broad category of within project defect prediction tech-
niques (WPDP) or cross project defect prediction techniques (CPDP). As the name suggests,
WPDP uses the same project in training and testing, whereas CPDP is across different
projects. CPDP has several variants including strict CPDP, mixed CPDP, and pair-wise
CPDP (Herbold 2017b). In strict CPDP, there is a strict distinction between the projects used

Empirical Software Engineering (2020) 25:5047–5083 5051

in training and testing. This restriction implies that none of the projects used for training the
model remain part of the testing data so that information from same context does not mix
up. Contrarily, in mixed CPDP, some releases of a project are used for training while oth-
ers are used for testing. In pair-wise CPDP, a separate model is trained using each project
release, and their performance is averaged for estimating the actual performance.

3.2 Extract Software Defect PredictionMetrics with Dated Releases

Existing software systems with issue trackers can be used to extract software defect
prediction metrics and post-release defects via mining software repositories. Extraction
methodologies discussed in prior work (Śliwerski et al. 2005a; Fischer et al. 2003; Zim-
mermann and Nagappan 2007) can be leveraged for the purpose of gathering data. We can
alternatively benefit from existing defect data sets used by prior studies for evaluating the
technique. One has to make sure that the data set contains releases that have dates or time-
stamps. Alternatively, if versions are specified, one can extract and use version release dates.
For example, if the data set contains commit history ids, bug report ids, and version release
tags, we can extract version release dates from these factors. Before moving on to the next
step, one has to label the defect data set instances with dates or timestamps.

3.3 Sort and Split Project Versions Into Time Buckets

In this step, the defect data set is first sorted according to the time available in the form
of version dates, and then split using N split points. A split point is the reference point
in time that partitions the defect data into time-buckets, and it is chosen such that the data
is partitioned into a day, month, or year granularity. Consequently, each time-bucket spans
days, months, or years of releases.

Figure 1 illustrates how an example N-year long data set is divided into N buckets using
split point at one year granularity. Bucket-1 is formed starting from the oldest project version
until the first split, so it contains project versions spanning a year. Bucket-2 contains one
year data between first and second split, and so on. In this way, all versions of all projects
released within one specific year fall into the bucket representing that year. The choice of
window size, and hence the bucket granularity, may vary depending on the available data
and time information. If there were no project versions in, for example, Year-2 in Fig. 1,
then Bucket-2(B2) would also remain empty. On the other hand, in the current example,
one version (V2) of a project (P1) was released in Year-2, and, therefore, it is included in
B2. Therefore, one may observe that the number of projects and versions in each bucket are
unequal.

These split points allow the software versions before a certain split to be used for training
set while any versions after that split form the test set. Unlike cross-validation there is no
time-travelling in such evaluation because the buckets are ordered by time. Notice that a
lower granularity spreads the data set well across the timeline and a great number of data
points are available for constructing and evaluating the defect prediction models. For the
rest of this paper, we will refer to these time ordered buckets as a time-series data set.

3.4 Generate Training-Test Pairs from Time Buckets

In this step, we use the time-series data set to generate multiple Training-Test (Tr-Test) pairs
following four time-aware configurations. Figure 1 provides a high-level overview of these
configurations where the time granularity of buckets is one year, and each bucket contains

Empirical Software Engineering (2020) 25:5047–50835052

Fig. 1 Generating Training (Tr) and Test (Test) pairs using four time-aware configurations: Constant-
Constant (CC), Increasing-Constant (IC), Constant-Increasing (CI), Increasing-Increasing (II). Pn refers to
Project number, Vn refers to Version number, Yn refers to (Year number), and K is Window size and decides
the number of time buckets that are used in training and testing. φ in II means that Window size does not
matter in that configuration

Empirical Software Engineering (2020) 25:5047–5083 5053

Table 2 An example illustrating four time-aware settings (a=CC, b=IC, c=CI, d=II) of three releases of three
different projects over a period of three years (i-2008, j-2009, k-2010). φ = empty set representing no release
available at that time. ∞ = max window size possible

Tr set Test set Split point Window size

{i-2008} {j-2009} 2008-2009 1

{j-2009} {k-2010} 2009-2010 1

{φ, i-2008} {j-2009, k-2010} 2008-2009 2

{i-2008, j-2009} {k-2010, φ} 2009-2010 2

(a) Configuration Constant-Increasing (CC)

{i-2008} {j-2009} 2008-2009 1

{i-2008, j-2009} {k-2010} 2009-2010 1

{i-2008} {j-2009, k-2010} 2008-2009 2

{i-2008, j-2009} {k-2010, φ} 2009-2010 2

(b) Configuration Increasing-Constant (IC)

{i-2008} {j-2009, k-2010} 2008-2009 1

{j-2009} {k-2010} 2009-2010 1

{φ, i-2008} {j-2009, k-2010} 2008-2009 2

{i-2008, j-2009} {k-2010, φ} 2009-2010 2

(c) Configuration Constant-Increasing (CI)

{i-2008} {j-2009, k-2010} 2008-2009 ∞
{i-2008, j-2009} {k-2010} 2009-2010 ∞

(d)Configuration Constant-Increasing (II)

multiple project versions. In each configuration, the split point divides the data into two
parts: past and future. The red dot represents a split point in Fig. 1. The buckets containing
project versions before the split point form the past of a data set and will be considered
for training (Tr) while those after the split point (after skipping one bucket) form the future
and are used for testing (Test). The reason for skipping one bucket is to reduce the possible
chances of time-travel within the instances of training and test data and to allow some time
for buggy changes in the training set to be discovered and fixed. This gap can vary and
should ideally be equal to the time that it takes for a bug to be reported and fixed. We further
employ window size to select the number of time-buckets to be used for generating Tr-Test
pairs. The window size also has a granularity in terms of the number of time buckets, e.g.,
a window size of one corresponds to one year of data in our example. Consequently, the Tr-
Test set size, i.e., the number of project versions in training and test set, varies as window
size changes: number of project versions is not constant in every bucket.

To explain the four configurations, we use the example of Table 1 introduced earlier in
Section 1 and present Tr-Test pairs corresponding to the four time-aware configurations in
Table 2. φ in the table represents an empty set for the cases when window size exceeds the
number of buckets available in the data set for Tr or Test set. Unlike Fig. 1, for the sake of
brevity, the gap between Tr-Test pairs in Table 2 is not shown.

Configuration 1 — Constant-Constant (CC): In this configuration, the Tr and Test set
are populated according to the window size. At each split point with a constant window size
K , we take K time-buckets before the split point for Tr set and an equal number of buckets

Empirical Software Engineering (2020) 25:5047–50835054

after one bucket gap of the split point for Test set, as shown in Fig. 1. This Tr set and Test
set forms a Tr-Test pair. The window size is increased once the Tr-Test pairs over all split
points are generated. As a result, we get one Tr-Test pair corresponding to each value of
window size and split point.

The process of generating Tr-Test pairs is repeated until all possible pairs corresponding
to each split point and window size are generated. There can be cases where an equal number
of buckets before and after the split point are not available, for example, if we consider
CC configuration’s K=3 at split Y1-Y2 in Fig. 1 there is only one bucket available for
training. To ensure consistency in generating configurations, we consider as many buckets
as available at such split points, hence our Tr set = {φ,B1}. This configuration is similar to
the evaluation of Rakha et al. (2018) except that they employed tuning.

Configuration 2 — Increasing-Constant (IC): At each split point in this configuration,
the Test set is populated with K time buckets after skipping one bucket after the split point,
whereK is the window size. While the Tr set is populated with all the time-buckets available
before the split point. Same as CC, the window size is increased once the Tr-Test pairs over
all split-points are generated. Considering each split point and current window size value
referred to asK in Fig. 1; we take all time-buckets before the split point for Tr andK number
of buckets after skipping one bucket after the split point for Test. The example Tr-Test pairs
corresponding to each value of window size and split point are shown in Fig. 1.

Configuration 3 — Constant-Increasing (CI): Contrary to IC, at each split point in this
configuration, the Tr set instead of Test set is populated with K time buckets before the
split point, where K is the window size. Whereas same as CC and IC, the window size is
increased once the Tr-Test pairs over all split-points are generated. Considering each split
point and current window size value referred K; we take K number of buckets before the
split point for Tr while all time-buckets after skipping one bucket after the split point for
Test. The example Tr-Test pairs corresponding to each value of window size and split point
are shown in Fig. 1.

Configuration 4 — Increasing-Increasing (II): In II, the window size does not matter
because at each split point, the Tr-Test pairs are generated by taking all the buckets before
split point for training and all those after skipping one bucket after the split point for test-
ing. We set window size or K in this configuration to infinity as that is theoretically the
maximum possible window size.

Each configuration serves a different purpose, and depending on the context one config-
uration is a more appropriate choice than the other. For example, the quality assurance team
wanting to test the next due release of a project against the entire past may use IC or II con-
figurations. The CI configuration is more useful in cases where a major release in the past
has entirely changed the system, and the developers want to test their system since then.
CC and II configurations might benefit researchers who are trying to evaluate the defect
prediction methodologies, so they can evaluate and compare the performance of defect pre-
diction approaches. It is still a matter of research to find out which configuration is a better
choice for what kind of environment. However, we employ all four configurations in our
experiments.

3.5 Build PredictionModels and Evaluate Performance

Each technique applies certain treatment on the instances in the training and test set before
building the model. For example, one technique may apply log transformation on the train-
ing set, while another may use K-Nearest Neighbours (KNN) relevancy filtering. Therefore,
we apply the treatment proposed by a defect prediction technique to all the Tr and/or Test

Empirical Software Engineering (2020) 25:5047–5083 5055

sets generated in the previous step and then build a prediction model from each Tr set. We
then evaluate that model on each project version in the Test set and calculate the mean per-
formance. For example, in Fig. 1, consider IC configuration’s second setting, where K=1 at
split point Y2–Y3, the training set Tr is B1,B2 and Test set is B4. Given that B4 consists of
three projects P1V3, P2V3, P3V2. For this setting, we will train one prediction model and
evaluate it on three separate test sets: trained on Tr=B1,B2 and tested on Test=P1V3, then
on Test=P2V3, and finally on Test=P3V2. Similarly, if there are multiple versions of a same
project in the test bucket, we evaluate each version separately. If there was a P3V4 in B4,
then we would test that separately as well.

4 Experimental Setup

In this section, we employ the proposed time-aware configuration settings to investigate the
conclusion stability of cross-project defect prediction approaches.

4.1 Select Techniques to Evaluate

In this work, we do not propose a new defect prediction approach. Instead, we re-evaluate
existing cross-project defect prediction techniques from the literature. Specifically, we eval-
uate the conclusion stability of five defect prediction techniques that Herbold et al. (2018)
recently evaluated in a defect prediction benchmarking study. We choose this study as a
reference, because it is the most comprehensive evaluation of CPDP approaches, and eval-
uating techniques from their study allows us to compare our results with them. The results
and replication kit of benchmarking study are also publicly available (Herbold 2017a).

The five replicated techniques include the one proposed by Amasaki et al. (2015)
(Amasaki15), Watanabe et al. (2008) (Watanabe08), Cruz and Ochimizu (2009) (Camar-
goCruz09), Nam and Kim (2015) (Nam15), and Ma et al. (2012) (Ma12). The selection
is guided by original rankings reported in the benchmarking study done by Herbold et al.
(2018). CamargoCruz09 and Watanabe08 are the top-ranked techniques according to the
rankings reported in Herbold et al. (2018). The other two techniques, Amasaki15 and Ma12
are among the middle ranked approaches whereas Nam15 performs worst. Hence, to ensure
diversity, we choose two top ranked, two middle ranked, and one lowest rank approach for
evaluation.2

We take a limited number of techniques, because of the large number of models that we
already have to train at each point in time with varying window sizes. Our problem has a
huge dimensionality and it could grow significantly by adding more techniques, because,
for each new technique multiple Tr-Test pairs i.e. models need to be evaluated.

4.2 Extract Software Defect Prediction Data Set with Dated Releases

To choose our data set, we explored the well-known PROMISE repository that is used in
many defect-prediction studies (Fenton et al. 2007; Menzies and Di Stefano 2004; Men-
zies et al. 2004; Koru and Liu 2005; Morasca and Ruhe 2000). Unfortunately, we could not
find time-relevant features within that data set, which suggests the lack of concern about

2In the rest of the paper, we do not use the rankings reported in original study of Herbold et al. (2018), but
instead use our re-implementation results of his methodology on open-source projects in Jureczko data set.

Empirical Software Engineering (2020) 25:5047–50835056

the time-order of defect data in the community. We also explored the five data sets used
in the benchmarking study of Herbold et al. (2018), but all except the Jureczko (Jureczko
and Madeyski 2010) lack time-relevant information that can be used to retrieve time of
occurrence of defects. Since we need release-time information, we only use a subset of
Jureczko data set consisting of only open-source projects, and we refer to it as FILTER-
JURECZKO. We use open-source projects because their version numbers were specified,
and hence release dates of only these versions could be retrieved from the project’s ver-
sion control repositories. As a result, we got 33 versions of 14 open-source projects for our
experiment containing 20 static product metrics for Java classes and the number of defects
found at class-level. Therefore our CPDP experiment is on class-level.

4.3 Sort and Split Project Versions Into Time Buckets

The project versions in the FILTERJURECZKO data set are spread across 8.5 years starting
from November 1999 and ending at February 2009. We sort the entire data set using the
version release dates and then divide it using split points having 6 month granularity. These
points equally split the data set into a number of 6 month time-buckets; each containing
project versions that are at most 6 months apart. We did not keep a finer granularity than
6 months, because of the limited data at hand and also because project releases are usually
several months apart. In total, we have 18 buckets. Each bucket consists of multiple versions
of different projects that lie within the 6-month time period. Out of 18 buckets, some buckets
have multiple versions of the same project, because multiple versions were released within
the 6-month time period whereas some buckets are completely empty because no project
version was released during six months. In the end, we partitioned the entire data set into
18 sorted time-buckets and we refer to it as a “time-series data set”. Figure 2 is a graphical
illustration of different project versions spread across 18 time buckets. For example, the
first bucket has only one version of Xerces, and the last bucket has four versions of Camel
and one version of Ivy. Table 3 represents the release date and defective instances for each
version of the projects in our data set.

4.4 Generate Train-Test Pairs from Time Buckets

We generate multiple Tr-Test pairs from the time-series data set using four generic configu-
rations; CC, IC, CI, and II. The Tr and Test sets are formed by varying the window size from
1 to 19 for CC and 1 to 18 for IC at all possible split points and then unioning the training
project data. However, following strict CPDP, we do not allow the test set to include any
version from a project that was already part of the training set. At the same time, to ensure
that the data from which defect labels are computed does not intersect with test data from
the next time bin, we leave a gap of one bucket between each Tr-Test pair, similar to the
work by Tan et al. (2015).

We generated approximately 18,000 Tr-Test pairs for each technique and trained a total
of 18, 000 × 5 = 90, 000 models for evaluation of the five techniques that we studied.
The different number of Tr-Test pairs (and models) in CC, CI, and IC is due to the strict
CPDP settings of our experiment, which does not allow the same project to be used for both
training and testing. Consequently, at some split points, there is no data left for testing and
hence we eliminate that pair. Figure 3 shows the size of training and test data for each of the
pairs in the four configurations. We also show the percentage of defective instances in our
training and test data set at each split point and window size in Fig. 4.

Empirical Software Engineering (2020) 25:5047–5083 5057

4.5 Build PredictionModels and Evaluate Performance

The defect prediction techniques apply certain treatments on the data before training the
actual model. The treatments are applied as suggested by the benchmarking study of
Herbold et al. (2018). Suppose the training data is referred as S and the test data is S∗.

For Amasaki15 Amasaki et al. (2015), we perform attribute selection over log trans-
formed data by discarding attributes whose value is not close to any metric value in the data.
We then apply relevancy filtering similarly by discarding instances whose value is not close
to any instance values.

ForWatanabe08Watanabe et al. (2008), we standardize the training data for all Tr-Test
pairs as:

m̂i(s
∗) = (mi(s

∗) · mean(mi(S)))/(mean(mi(S
∗)))

For CamargoCruz09 Cruz and Ochimizu (2009), we use Test data as reference point
and apply logarithmic transformation as:

m̂i(s) = log(1 + mi(s)) + median(log(1 + mi(S))) − median(log(1 + mi(S
∗)))

For Nam15 Nam and Kim (2015), clustering and labelling of instances is performed
based on the metric data by counting the number of attribute values that are above the
median for that attribute. Afterwards all instances that do not violate a metric value based
on a threshold called metric violation score are selected.

Fig. 2 Project versions in our dataset spread across 19 time buckets. Number of projects represented by dot
size corresponds to number of versions of a project in any time bucket shown on y-axis

Empirical Software Engineering (2020) 25:5047–50835058

Table 3 the details of the FILTERJURECZKO dataset, showing the version of each project with its release
date and defective instances

Version Release Date Cases #Defects Defective Instances(%)

xerces-init 1999-Nov-08 162 77 48%

xerces-1.2 2000-Jun-23 440 71 16%

xerces-1.3 2000-Sep-29 453 69 15%

log4j-1.0 2001-Jan-08 135 34 25%
xerces-1.4 2001-Jan-26 588 437 74%
log4j-1.1 2001-May-20 109 37 34%
log4j-1.2 2002-May-10 205 189 92%
xalan-2.4 2002-Aug-28 723 110 15%
xalan-2.5 2003-Apr-10 803 387 48%
ant-1.3 2003-Aug-12 125 20 16%
ant-1.4 2003-Aug-12 178 40 22%
ant-1.5 2003-Aug-12 258 28 11%
ant-1.6 2003-Dec-18 351 92 26%
xalan-2.6 2004-Feb-27 885 411 46%
pbeans1.0 2004-Mar-21 26 20 77%
forrest-0.6 2004-Oct-14 6 1 17%
ivy-1.1 2005-Jun-13 111 63 57%
forrest-0.7 2005-Jun-22 29 5 17%
xalan-2.7 2005-Aug-06 909 898 99%
lucene-2.0 2006-May-26 195 91 47%

tomcat 2006-Oct-21 858 77 9%

ivy-1.4 2006-Nov-09 241 16 7%

velocity-1.4 2006-Dec-01 196 147 75%

ant-1.7 2006-Dec-13 745 166 22%

velocity-1.5 2007-Mar-06 214 142 66%

pbeans2.0 2007-Mar-26 51 10 19%

forrest-0.8 2007-Apr-17 32 2 6%

synapse-1.0 2007-Jun-13 157 16 10%

lucene-2.2 2007-Jun-17 247 144 58%

poi-2.0 2007-Jun-24 314 37 12%

poi-1.5 2007-Jun-24 237 141 59%

poi-2.5 2007-Jun-24 385 248 64%

poi-3.0 2007-Jun-24 442 281 64%

synapse-1.1 2007-Nov-13 222 60 27%

synapse-1.2 2008-Jun-09 256 86 34%

ckjm1.8 2008-Jun-17 10 5 50%

lucene-2.4 2008-Oct-08 340 203 60%

velocity-1.6 2008-Dec-01 229 78 34%

ivy-2.0 2009-Jan-18 352 40 11%

camel-1.0 2009-Jan-19 339 13 4%

camel-1.2 2009-Jan-19 608 216 36%

camel-1.4 2009-Jan-19 872 145 17%

camel-1.6 2009-Feb-17 965 188 19%

Empirical Software Engineering (2020) 25:5047–5083 5059

For Ma12 Ma et al. (2012), weighting is applied on data on the basis of similarity. The
weights are calculated as:

ws = simattss/(p − simmatss + 1)2

where p is the number of attributes and simatts are those attributes of an instance whose
value is within the range of test data.

More details about these techniques are available in their original publications. The
source code for applying these treatments is provided by Herbold (2015) and Herbold
(2017a) as a replication package.3

For each technique, we built 976 separate defect prediction models utilizing all the Tr-
Test pairs. We trained these models on Decision Trees (DT) using C4.5 algorithm in Weka
(Witten et al. 2016). We chose DT, because all the studied techniques performed best on
Decision Trees classifier in the benchmarking study (Herbold et al. 2018). To compare our
results with the benchmarking study, we also trained our models on DT using a confidence
interval of between 0.1 and 0.30 with pruning. We did not tune our classifier to keep the
experimental settings consistent with Herbold et al. (2018), because changing them could
bias our results and the observed difference in performance could entirely be due to tuning.
Moreover, our small data set limits us from giving up a whole window for tuning. Rakha
et al. (2018) had an ample amount of data, hence they tuned their models in the duplicate
issue reports study.

While evaluating our models, we calculated their performance in terms of precision,
recall, F-Score, G-measure, MCC, and AUC. Recall is the ratio of true positives to true
positives and false negatives, and it measures the number of actual defects that are found.
Precision is the ratio of true positives to true positives and false positives, and it measures
how many of the found defects are actually defects. F-Score is a combination of preci-
sion and recall, and is calculated using the harmonic mean of the two. G-measure is the
harmonic mean of recall and the probability of false prediction, pf. Matthews Correlation
Coefficient (MCC)measures the correlation between the actual and the predicted classifica-
tions, ranging between -1 and +1, where -1 indicates total disagreement, +1 indicates perfect
agreement, and 0 indicates no correlation at all. AUC or the Area under the Receiver Oper-
ating Characteristic Curve is a plot of the true positive rate vs the true negative rate. These
performance metrics are defined as follows,

recall = tp

tp + f n

precision = tp

tp + fp

F − score = 2 · precision · recall

recall + precision
G − measure = 2 · recall·(1−pf)

recall+(1−pf)

where, pf = fp
tn+fp

MCC = tp · tn − fp · f n√
(tp + fp)(tp + f n)(tn + fp)(tn + f n)

where tp and fp are the numbers of the true and false positives respectively, whereas, tn and
fn are the numbers of the true and false negatives.

3Herbold’s replication kit (https://crosspare.informatik.uni-goettingen.de/)

Empirical Software Engineering (2020) 25:5047–50835060

https://crosspare.informatik.uni-goettingen.de/

Fig. 3 Representation of Training (tr) and Test (test) Data Set Size i.e. Number of instances with varying
window size and split points in time for each configuration. Instances show the number of instances available
in Train and Test set for n-th Window Size or n-th Split point in time

Empirical Software Engineering (2020) 25:5047–5083 5061

Fig. 4 Representation of Defective Instances (%) in Training (tr) and Test (test) Data Sets with varying
window size and split points in time for each configuration

Empirical Software Engineering (2020) 25:5047–50835062

Table 4 Comparison of our methodology and experimental setup with the original study of Herbold et al.
(2018) and HERBOLDMETHOD which is our re-implementation of their study

Evaluation Parameter Original Study
(Herbold et al.
2018)

HERBOLDMETHOD Time-aware Evaluation

CPDP Type Strict Strict Strict

Approaches Evaluated 24 5 5

Datasets Jureczko and three others FILTERJURECZKO FILTERJURECZKO

Data time considered No No Yes

Classifiers Decision tree and five
more

Decision tree Decision tree

Data balancing No No No

Classifier Tuning No No No

Classifier Training Cross-validation Cross-validation Four time-aware configu-
rations

Performance Metrics F-measure, MCC, AUC,
G-measure, Mean-rank
score

F-measure, MCC, AUC,
G-measure, Mean-rank
score

F-measure, MCC, AUC,
G-measure, Mean-rank
score

5 Results

As a result of running our time-aware experiment we gather models for each Tr-Test
pair representing one split point in time and each window size of a given configuration.
All the models are built using Decision Tree classifier and the results constitute a range
of performance estimates that we use to examine conclusion stability of cross-project
defect prediction models. We also compare the results of our time-aware experiment with
results obtained by re-conducting the experiment of Herbold et al. (2018) on the FILTER-
JURECZKO data set. Instead of reporting the result of Herbold’s original study, we use our
re-implementation results of his methodology referred subsequently as HERBOLDMETHOD.
Table 4 highlights some of the commonalities and differences between our evaluation and
HERBOLDMETHOD. However, different research questions can also be answered using our
methodology. To facilitate further investigations, we provide a replication kit (Bangash
2020) which includes:

1. FILTEREDJURECZKO data set with Tr-Test pairs of all four configurations.
2. a source code for generating four configurations Tr-Test pairs from any data set.
3. an updated version of Herbold’s source code for time-aware experiment.
4. a .csv dump file for all the results calculated from our experiment.
5. R-scripts to generate graphs for visual inspection of results.

Replication kit: https://doi.org/10.5281/zenodo.3715485

5.1 RQ1: Are the cross-project defect prediction approaches stable in terms
of their conclusions when evaluated over time?

Motivation Prior research evaluates defect prediction approaches in a time-agnostic man-
ner. The results obtained from one specific evaluation at a particular point in time are
generalized to all available time-periods. This assumption is unrealistic as defect predic-
tion approaches might not have stable conclusions and hence results cannot be generalized

Empirical Software Engineering (2020) 25:5047–5083 5063

https://doi.org/10.5281/zenodo.3715485

Table 5 Arithmetic Mean and Standard Deviation(SD) of the F-Scores of five evaluated approaches using
four time-aware configurations. Bold values indicate SD larger than our 0.05 threshold

Amasaki15 Watanabe08 CamargoCruz09 Nam15 Ma12

Configuration Mean SD Mean SD Mean SD Mean SD Mean SD

CC 0.373 0.085 0.379 0.089 0.355 0.091 0.491 0.070 0.376 0.085

IC 0.373 0.078 0.373 0.084 0.345 0.079 0.496 0.072 0.376 0.081

CI 0.365 0.077 0.371 0.083 0.346 0.084 0.478 0.055 0.366 0.082

II 0.363 0.071 0.367 0.077 0.335 0.073 0.483 0.054 0.363 0.078

Table 6 Arithmetic Mean and Standard Deviation(SD) of the AUCs of five evaluated approaches using four
time-aware configurations

Amasaki15 Watanabe08 CamargoCruz09 Nam15 Ma12

Configuration Mean SD Mean SD Mean SD Mean SD Mean SD

CC 0.571 0.045 0.562 0.046 0.556 0.042 0.638 0.021 0.577 0.036

IC 0.573 0.038 0.555 0.044 0.548 0.039 0.638 0.021 0.579 0.029

CI 0.572 0.036 0.562 0.040 0.559 0.038 0.636 0.015 0.578 0.028

II 0.571 0.034 0.557 0.038 0.549 0.034 0.636 0.014 0.577 0.024

Table 7 Arithmetic Mean and Standard Deviation(SD) of the MCCs of five evaluated approaches using four
time-aware configurations. Bold values indicate SD is larger than our 0.05 threshold

Amasaki15 Watanabe08 CamargoCruz09 Nam15 Ma12

Configuration Mean SD Mean SD Mean SD Mean SD Mean SD

CC 0.143 0.055 0.124 0.061 0.117 0.064 0.232 0.037 0.135 0.051

IC 0.156 0.053 0.127 0.063 0.118 0.060 0.231 0.040 0.142 0.046

CI 0.141 0.045 0.125 0.054 0.116 0.055 0.228 0.026 0.134 0.043

II 0.152 0.045 0.131 0.050 0.114 0.055 0.229 0.027 0.140 0.044

across the entire data set irrespective of time. The goal of this research question is to study
the conclusion stability of defect prediction approaches. We hypothesize that “a defect pre-
diction technique has stable conclusion if for a given performance metric, the standard
deviation produced by all Tr-Test pairs in a specific configuration is less than absolute 0.05”.
Prior works such as Zhang et al. (2014) and Herbold et al. (2018) consider 2% and 5%
respectively to be a significant performance gain in terms of AUC and F-Score, therefore
we also use 0.05 absolute value of a performance metric for the threshold.

Result We evaluate five cross-project defect prediction approaches in this paper and
according to the results of our experiment these approaches have unstable conclusions. To
investigate the conclusion stability; we analyze the F-Score, AUC, MCC and G-measure
values obtained from different evaluations of five approaches using Tr-Test pairs generated
according to the four configurations introduced earlier. Tables 5, 6, 7 and 8 shows the mean

Empirical Software Engineering (2020) 25:5047–50835064

a

b

c

d

e

Fig. 5 Comparison of F-Scores of techniques when evaluated over four configurations. A-Amasaki15, B-
Watanabe08, C-CamargoCruz09, D-Nam15, E-Ma12. Horizontal line shows HERBOLDMETHOD F-Score

Empirical Software Engineering (2020) 25:5047–5083 5065

Table 8 Arithmetic Mean and Standard Deviation(SD) of the G-measures of five evaluated approaches using
four time-aware configurations

Amasaki15 Watanabe08 CamargoCruz09 Nam15 Ma12

Configuration Mean SD Mean SD Mean SD Mean SD Mean SD

CC 0.483 0.113 0.497 0.121 0.464 0.121 0.582 0.058 0.491 0.111

IC 0.498 0.092 0.510 0.103 0.471 0.103 0.581 0.054 0.506 0.093

CI 0.482 0.112 0.497 0.123 0.464 0.119 0.586 0.048 0.485 0.116

II 0.494 0.093 0.513 0.104 0.470 0.102 0.585 0.041 0.501 0.099

Bold values indicate SD is larger than our 0.05 threshold

and the standard deviation of F-Score, AUC, MCC, and G-measure for the five evaluated
approaches. The mean and standard deviation values were calculated across all Tr-Test pairs
generated according to CC, CI, IC and II configuration.

The bold values in Tables 5 through 8 indicate that the overall standard deviation of the
given performance metric observed across different evaluations in a configuration is greater
than 0.05. The F-Scores and the G-measures of all five approaches vary by more than 0.05
in almost all configurations suggesting that instability exists. We believe that conclusions
of a model’s performance may change depending on the context, i.e., time at which model
was trained and evaluated which explains this instability in all performance metrics except
AUC which remains stable. This conclusion about the performance of models with respect
to time is re-assured in Section 6.2.2 by measuring the F-Score standard deviation while
keeping the window size constant.

Figure 5 further shows F-Scores plotted on y-axis over split points in time on the x-axis.
The boxplots in figure illustrate the variance in the F-Score values of techniques evaluated
according to four configurations. The length of barplots signify the magnitude of variation
in the F-Score at a particular split point. If we observe the F-Score values along the timeline
in Fig. 5, there is a drastic variation at different points in time, particularly for CC and IC
and to a relatively lesser extent in CI. In the II configuration, the F-Scores of all techniques
except Nam15 exhibit a similar variation across timeline. Overall CamargoCruz09 shows
the highest deviation by deviating more than 0.05 from it’s mean value almost 26% of the
times followed by Amasaki15, Watanabe08, Ma12 and Nam15 respectively which deviate
25%, 24%, 24% and 11% of the times respectively.

Since the time-agnostic evaluation ignores time, therefore all prior works report aggre-
gate F-Score over the entire evaluated time-period. The green constant horizontal line drawn
over Fig. 5 refers to the F-Score value obtained by HERBOLDMETHOD and represents the
mean of cross-validation F-Scores produced in different folds. The large number of results
falling on both sides of the horizontal line indicate that conclusions drawn about the perfor-
mance of an approach are not stable over different evaluations. For example, at split point 3
in CC configuration in Fig. 5-D, F-Score is above 0.8 but it drops to around 0.35 if we move
just one split point ahead on the timeline to split 4. Such abrupt variations across the time
line show that performance claims can be highly unrealistic if the context is ignored. There-
fore reporting a single value and generalizing it over different points in a project’s evolution
can be quite misleading.

The problem is further aggravated by large number of outliers that can be seen in Fig. 5,
indicating the fact that evaluation can often yield very high or low performance estimates,

Empirical Software Engineering (2020) 25:5047–50835066

Table 9 Resulting p-values of Wilcoxon rank-sum tests for comparison between four configurations and
HERBOLDMETHOD for the five approaches. Bold values indicate statistically significant differences at α =
0.01

Technique F-Score AUC MCC G-measure

Amasaki15 < 0.01 0.20 < 0.01 0.79

CamargoCruz09 < 0.01 < 0.01 < 0.01 < 0.01

Watanabe08 0.17 0.12 < 0.01 < 0.01

Nam15 < 0.01 0.07 0.16 < 0.01

Ma12 0.73 < 0.01 < 0.01 < 0.01

which are far from the real performance that a defect prediction technique may achieve
in practice. Therefore, the conclusions drawn from a specific period of time should not
be generalized outside of it. It is rather more appropriate for researchers to report a range
of values of a performance metric corresponding to multiple time-periods and contexts of
evaluation.

5.2 RQ2: How do the results of time-agnostic and time-aware evaluations differ?

Motivation The time-agnostic evaluation of defect prediction techniques might lead to
false estimates of performance. In this question we compare the results of time-agnostic and
time-aware evaluations to better understand the impact of evaluation method on the results
of cross-project defect prediction models.

Result We use Wilcoxon rank-sum test to evaluate whether the differences between HER-
BOLDMETHOD and our results are statistically significant or not. Table 9 reports the
p-values of Wilcoxon test and bold values indicate a statistically significant difference at an
α value of 0.01. The comparison reveals that the results of our time-aware evaluations differ
from HERBOLDMETHOD in terms of all four metircs for the CamargoCruz09 and in terms
of at least two out of the four metrics for the remaining approaches. These difference are
also statistically significant (p-value < 0.01).

To quantify the differences between our configurations and HERBOLDMETHOD we
employ Cliff’s Delta which is a measure of the effect size and does not assume normality of
distribution. For Cliff’s Delta we use the interpretations of Romano et al. (2006) which con-
siders difference to be Negligible if Cliff’s |d| ≤ 0.147, Small if Cliff’s |d| ≤ 0.33, Medium
when Cliff’s |d| ≤ 0.474, and Large otherwise. The Cliff delta indicates that the observed
differences have small to negligible effect size for all four metrics and five approaches.
Despite an overall small effect size, the variations in performance at different split points

Empirical Software Engineering (2020) 25:5047–5083 5067

Table 10 Raw result values of HERBOLDMETHOD and time-aware evaluation—HERBOLDMETHOD reports
only one value of F-Score, AUC and MCC for each technique which is duplicated across all rows

New Values HERBOLDMETHOD Values

Technique Configuration F-Score MCC AUC G-Measure F-Score MCC AUC G-Measure

Amasaki15 CC 0.373 0.142 0.571 0.483 0.388 0.175 0.578 0.516

IC 0.373 0.155 0.573 0.498 0.388 0.175 0.578 0.516

CI 0.365 0.141 0.571 0.482 0.388 0.175 0.578 0.516

II 0.363 0.152 0.571 0.494 0.388 0.175 0.578 0.516

All Configurations 0.368 0.148 0.571 0.489 0.388 0.175 0.578 0.516

Watanabe08 CC 0.379 0.123 0.562 0.497 0.392 0.109 0.563 0.506

IC 0.373 0.127 0.555 0.510 0.392 0.109 0.563 0.506

CI 0.371 0.124 0.562 0.497 0.392 0.109 0.563 0.506

II 0.367 0.131 0.557 0.513 0.392 0.109 0.563 0.506

All Configurations 0.373 0.126 0.559 0.504 0.392 0.109 0.563 0.506

CamargoCruz09 CC 0.354 0.117 0.556 0.464 0.389 -0.086 0.468 0.523

IC 0.345 0.118 0.548 0.471 0.389 -0.086 0.468 0.523

CI 0.346 0.116 0.559 0.464 0.389 -0.086 0.468 0.523

II 0.335 0.114 0.549 0.470 0.389 -0.086 0.468 0.523

All Configurations 0.345 0.116 0.553 0.467 0.389 -0.086 0.468 0.523

Nam15 CC 0.491 0.232 0.638 0.582 0.492 0.235 0.641 0.602

IC 0.496 0.231 0.638 0.581 0.492 0.235 0.641 0.602

CI 0.478 0.228 0.636 0.585 0.492 0.235 0.641 0.602

II 0.483 0.229 0.636 0.585 0.492 0.235 0.641 0.602

All Configurations 0.487 0.230 0.637 0.583 0.492 0.235 0.641 0.602

Ma12 CC 0.376 0.134 0.577 0.491 0.392 0.160 0.581 0.521

IC 0.376 0.142 0.578 0.506 0.392 0.160 0.581 0.521

CI 0.366 0.134 0.577 0.485 0.392 0.160 0.581 0.521

II 0.363 0.140 0.577 0.501 0.392 0.160 0.581 0.521

All Configurations 0.370 0.138 0.577 0.496 0.392 0.160 0.581 0.521

and the combined effect of variations across different metrics cannot be ignored. Further-
more, regardless of the effect size, it is methodologically incorrect to evaluate the defect
prediction techniques using time-agnostic evaluation or to generalize their performance
beyond the evaluated time periods.

5.3 RQ3: What is the ranking of evaluated techniques in time-aware experiment?

Motivation The recent replication done by Herbold et al. (2018) ranks 24 cross project
defect prediction approaches using common data sets and performance metrics. The aim

Empirical Software Engineering (2020) 25:5047–50835068

Fig. 6 Variation in ranks of techniques evaluated using CC configuration. Each sub-figure represents a win-
dow size from (1 to 17), x-axis shows split point in time (1 to 17), y-axis shows the ranks of technique from
(1 to 5), and K represents window size. Techniques: A=Amasaki15, W=Watanabe08, C=CamargoCruz09,
N=Nam15, M=Ma12

Empirical Software Engineering (2020) 25:5047–5083 5069

Fig. 7 Variation in ranks of techniques evaluated using IC configuration. Each sub-figure represents a win-
dow size from (1 to 17), x-axis shows split point in time (1 to 17), y-axis shows the ranks of technique from
(1 to 5), and K represents window size. Techniques: A=Amasaki15, W=Watanabe08, C=CamargoCruz09,
N=Nam15, M=Ma12

Empirical Software Engineering (2020) 25:5047–50835070

Fig. 8 Variation in ranks of techniques evaluated using CI configuration. Each sub-figure represents a win-
dow size from (1 to 17), x-axis shows split point in time (1 to 17), y-axis shows the ranks of technique from
(1 to 5), and K represents window size. Techniques: A=Amasaki15, W=Watanabe08, C=CamargoCruz09,
N=Nam15, M=Ma12

Empirical Software Engineering (2020) 25:5047–5083 5071

Table 11 New ranks of techniques based on Mean Rank Score and their comparison with HERBOLD-
METHOD ranks. For ease, the decimal values were replaced by whole numbers without affecting the
ranks

Technique HERBOLDMETHOD New Ranks

Ranks CC IC CI II

Nam15 1 1 1 1 1

Ma12 2 2 3 3 4

Amasaki15 3 3 2 4 3

CarmagoCruz09 4 5 5 5 5

Watanabe08 5 4 4 2 2

of their work was to benchmark the performance of CPDP approaches using multiple
learners and data sets. We on the other hand claim and show that their conclusion might
not hold under different contexts of evaluation. In this research question, we investi-
gate if the rankings of HERBOLDMETHOD still holds under our experimental settings
or not.

Result The performance estimates of our four configurations in comparison with HER-
BOLDMETHOD are reported in Table 10. The prior analysis in RQ2 suggests that for all
approaches, the performance in terms of at least two evaluation metrics differ significantly.
We further re-rank the defect prediction techniques relative to others on the basis of each
performance metric, using the following formula suggested by Herbold et al. (2018)

rankscore = 1 − #approaches ranked higher

#approaches − 1

The rankscore lies in the range of 0 and 1 which respectively represents lowest and
highest possible ranks. The Mean Rank Score of a technique is the arithematic mean of
rankscores computed using each of the four performance metric. Ranking a technique using
all performance metrics reduces the bias arising due to a single metric failing to estimate
the model performance. As a result, two approaches achieving same rankscore using two
different metrics may have the same overall score. The ranks of each technique per con-
figuration and the HERBOLDMETHOD ranks are presented in Table 11. Note that these
ranks were calculated using Mean Rank Score but, for the sake of readability, the deci-
mal values of Mean Rank Score were replaced with the respective ranks that those values
represent.

Table 12 Standard deviation in ranks of techniques calculated using Mean Rank Score of AUC, F-Score,
G-measure and MCC metrics

Technique CC IC CI II

Ma12 1.04 1.07 1.07 0.99

Nam15 0.37 0.31 0.29 0.24

Amasaki15 0.99 0.88 0.90 0.93

Watanabe08 1.08 1.15 1.11 1.10

CamargoCruz09 1.05 0.90 1.07 0.86

Empirical Software Engineering (2020) 25:5047–50835072

The ranks of the evaluated tecniques vary in each configuration and four out of five
techniques have a different rank in comparison with HERBOLDMETHOD. However, Nam15
which outperformed other approaches in HERBOLDMETHOD also obtained the top rank in
all time-aware configurations. It is the only technique whose rank matches with HERBOLD-
METHOD in addition to being consistent across the four configurations. Despite this one
may observe an occasional decline for Nam15 at different split points in Figs. 6, 7, 8 and 9.
Contrarily, the remaining four techniques, Amasaki15, Watanabe08, CamargoCruz09, and
Ma12 remain inconclusive not just across configurations but also at different split points.

To quantify the variation in the ranks of techniques, we present the standard deviation of
ranks within each configuration in Table 12. The values of standard deviation range from
0.24 (smallest) in Nam15 to 1.15 (largest) in Watanabe08 which shows that the ranks of
four techniques vary by at least +/ − 1 when evaluated at different time splits within a
configuration. This variation shows that the performance of each technique varies depending
on the context of evaluation and the ranks do not generalize over all time-periods.

6 Discussion

6.1 Insights from Study

In this study, we show that defect prediction approaches can exhibit different performance
when evaluated under different contexts. By using a subset of the Jureczko data used in the
benchmarking study of Herbold et al. (2018), we observed a disagreement with the ranks
reported in Herbold’s original study and HERBOLDMETHOD.

We also explain in this paper that cross-validation is not an appropriate way of train-
ing cross-project defect prediction models because it randomly splits the data irrespective
of time order. This type of evaluation might lead to the training of models on future data,
which is in practice, not available for use at the time of prediction. As a result, the per-
formance estimates of defect prediction models may be biased, and under realistic settings
the model may perform better or worse than the estimates produced by making unrealistic
assumptions.

Studies in the past have engaged in time-travel because of a cross-validation based eval-
uation, therefore to avoid it, we adopt a time-aware evaluation, and report the standard
deviation observed in the four performance metrics as well as the ranks of five techniques.
A comparison of our resulting ranks with the ranks reported by Herbold et al. (2018) and the
ranks obtained from HERBOLDMETHOD suggest that defect prediction models yield differ-
ent conclusions when evaluated using time-aware evaluation and data from different time
periods.

In the context of time-aware evaluation, online defect prediction is the safest approach,
because it trains the model on past data and evaluates it on future data. However, there is a
difference between our proposed methodology and online defect prediction. Online defect
prediction trains the model on complete data from the past, which is similar to our IC and II

Empirical Software Engineering (2020) 25:5047–5083 5073

Fig. 9 Variation in ranks of techniques evaluated using II configuration. The x-axis shows the split point in
time (1 to 17), and the y-axis shows the ranks of technique from (1 to 5). Remember window size(K) does
not matter in II. Techniques: A=Amasaki15, W=Watanabe08, C=CamargoCruz09, N=Nam15, M=Ma12

configurations. In contrast, in our CC and CI configurations, the model is trained on partial
data from the past which is less resource intensive.

In the following sections, we consider some of the factors that may have caused the
observed instability in the performance of defect prediction approaches.

6.2 Impact of Factors Other than Time on Conclusion Stability

We observed that the standard deviation (SD) of F-Scores in HERBOLDMETHOD is high
(i.e., > 0.1). Further, we compared the SD of HERBOLDMETHOD’s F-Score with the
SD of time-aware configurations’ F-Score. The technique wise F-Score SD of HERBOLD-
METHOD is 0.132 for Amasaki15, 0.152 for Watanabe08, 0.159 for CamargoCruz09, 0.179
for Nam15, and 0.133 for Ma12. While in contrast to HERBOLDMETHOD, the technique
wise F-Score SD of our time-aware configurations, as observed in Table 5, is always < 0.1.
Hence, it is safe to assume that the newly reported ranks by the time-aware configurations
in Table 10 are more reliable than HERBOLDMETHOD.

Having said that, there are several other possible factors that might have affected the
conclusion stability of CPDP approaches. These factors include, but are not limited to, the
following: noise in the dataset; types of the projects and stakeholders involved; software
development process; the nature of the CPDP approaches themselves; uneven release dis-
tribution of projects over timeline; size of the dataset and imbalanced data classes etc. We
investigate a few of the aforementioned factors below and their effects on the observed
instability.

Empirical Software Engineering (2020) 25:5047–50835074

a

b

c

d

e

Fig. 10 Comparison of F-Scores Standard Deviation (SD) of techniques A-Amasaki15, B-Watanabe08, C-
CamargoCruz09, D-Nam15, E-Ma12. The Y-axis shows F-Score SD for a fixed Window Size (K)

Empirical Software Engineering (2020) 25:5047–5083 5075

Fig. 11 Standard deviation in F-Scores of five techniques at a given Window Size (K) show on X-axis. The
Y-axis shows corresponding standard deviation in F-Score for that particular Window Size (K)

Empirical Software Engineering (2020) 25:5047–50835076

Table 13 Comparison of F-Score Standard Deviation(SD) of FILTERJUREZCKO with its two subsets

Technique FILTERJUREZCKO Subset-1 Subset-2

Ma12 0.08 0.11 0.11

Nam15 0.07 0.09 0.12

Amasaki15 0.08 0.12 0.10

Watanabe08 0.09 0.12 1.11

CamargoCruz09 0.09 0.13 0.11

Subset-1 represents data from 1999-07 to 2004-01 and Subset-2 represents data from 2004-07 to 2009-01.
The subsets are only evaluated for Configuration CC

6.2.1 Impact of Projects Included in Tr-Test Set

Herbold et al. (2018) explored the impact of using a small subset of data on the model per-
formance and found that it can lead to significantly different results. One might think that
it is the case here as well because, in our data set, not all the projects are evenly spread
across the timeline. For example, Xerces is only in the first few buckets (Fig. 2) and Camel
is only in the last few buckets. As a result some instability may be caused due to the change
of projects between different Tr-Test pairs. To counteract the effect of different projects
on performance instability we divided the data into two subsets: Subset-1 includes buckets
from 1990-07 to 2004-01, and Subset-2 includes buckets from 2004-07 to 2009-01. From
the results presented in previous section, the CC configuration has shown highest variance,
therefore we evaluate each subset by running only CC configuration. Table 13 shows that
the F-Score standard deviation increased when we divided the FILTERJURECZKO and both
the subsets have a higher standard deviation when compared to the original evaluation on
the entire data set. This confirms that the instability does not diminish even when same
projects are evaluated over time. However, it is still hard to reason whether this differ-
ence is due to time-based evaluation or merely because the data set size has been further
reduced.

6.2.2 Impact of Data Size

The Tr-Test pairs generated using different window sizes (K) vary in terms of size i.e., the
number of instances. The performance of a classifier can differ when trained using data
sets of different scales. Consequently, the variation might seem to have been introduced due
to the comparison between models trained using variable window sizes. To counteract this

Table 14 Standard Deviation(SD) of performance metrics when evaluated on balanced FILTERJUREZCKO

data set with CC configuration of time-aware methodology

Technique F-Score SD MCC SD AUC SD G-measure SD

Ma12 0.13 0.24 0.12 0.12

Nam15 0.11 0.18 0.08 0.09

Amasaki15 0.12 0.19 0.10 0.09

Watanabe08 0.11 0.20 0.12 0.10

CamargoCruz09 0.11 0.21 0.11 0.10

Empirical Software Engineering (2020) 25:5047–5083 5077

we fixed the window size while training prediction models and then compared the standard
deviation for every window size individually. The variability in F-score across different
values of K is shown in Fig. 10, and it can be seen that even for a fixed value of K, F-Score
varies from 0.2 to 0.6 and occassionally 0.8. The standard deviation in F-score for a fixed
value of K is also shown in Fig. 11 and it can be concluded that despite a fixed value of K
and data of similar scales, the instability is there and it remains high.

6.2.3 Impact of Data Imbalance

Data imbalance refers to the unequal distribution of prediction class labels in the train-
ing data set. This imbalance may cause a defect prediction model to incorrectly classify
between two classes during testing, which leads to inconsistent performance of the model
across its different evaluations. To achieve a balanced distribution, prior work (Yap et al.
2014; Zimmermann et al. 2007; Kamei et al. 2016) has used several re-sampling techniques
such over-sampling and under-sampling. Over-sampling uses the randomly selected minor-
ity class instances and adds them to the original data set. Under-sampling, on the other hand,
removes random instances from the majority class until both classes become equal.

To balance our data set, we used the under-sampling methodology and then re-ran all
five approaches using HERBOLDMETHOD and the CC configuration. We compared each
technique’s performance measures obtained using HERBOLDMETHOD with time-aware CC
configuration using Wilcoxon rank-sum test. For all five evaluated approaches, the results
of CC configuration still differ with HERBOLDMETHOD in a statistically significant way at
an α = 0.01. Table 14 shows that the standard deviation for all of the four metrics is above
our threshold, showing that the instability in results cannot be clearly attributed to different
class distributions.

6.3 Implications

Although, our study is limited to the area of cross-project defect prediction, the time-aware
methodology employed in this paper can be used to evaluate the conclusion stability of other
software analytic approaches, such as duplicate bug report prediction, effort estimation,
and bad smell detection. To this end, our experimental results ascertain that our concern
about over generalization of conclusions is legitimate. In our evaluation, which is based
on four time-aware configurations, the ranks of techniques vary by +1 or -1 within the
configurations as well as across them. Only Nam15 achieved the same rank in all four
configurations and in the HERBOLDMETHOD. The other techniques degrade by 2 or 3 ranks
in certain configurations, which means that there is no agreement and thus high instability
in the remaining four ranks. On a side note, these configurations allow for a systematic way
of generating training and test data and also seem promising, as evaluations based on them
exhibit diverse results which are realistically closer to the performance that a technique will
yield in practice.

Lastly, it should be noted that the computational cost of training a large number of models
corresponding to all configurations can be high, especially for models that employ sophis-
ticated training techniques such as Neural Networks. Therefore, only some configurations
or a few windows in each configuration may only be used to obtain realistic performance
estimates. Having said that, the choice of configuration entirely depends on the purpose
of evaluation, as we explained in the methodology section. In either case, however, a

Empirical Software Engineering (2020) 25:5047–50835078

time-stamped data set or version release dates are required to carry out a more detailed eval-
uation, and therefore software engineering researchers who plan to collect defect prediction
data in future shall also provide time information with their data sets.

7 Threats to Validity

Construct Validity We use the source code provided by Herbold (2017a) for the evaluation.
This poses a threat to the construct validity of our study but to counteract that, we also look
into the original papers and make sure the implementations were correct.

External Validity The external validity of the study is limited by the use of Jureczko data
set. Our experiment relies on dates and timestamps which were not available in any of the
publicly available data sets hence we relied on only a single data set for our study, Jureczko
data set. The data set contains 20 metrics and the results of our study might only hold for
data having similar characteristics.

Additionally, Jureczko data set does not contain bug-report and bug-fix timestamps. The
data set was collected by analyzing the commit logs using a regular expression to decide if a
commit is bug-fixing or not. Hence, we could not map release dates to bug report/fix times
and as a result we might have time-traveled due to our ignorance of these. Although, it is
out of the scope of our current study but in future we intend to update the bug-prediction
data sets to associate bug information with commits.

The standard deviation in the performance metrics of HERBOLDMETHOD and time-
aware configurations does not necessarily suggest that it exists primarily due to time. Rather,
there may be other factors affecting this standard deviation such as noise in the dataset,
types of the projects, software development process, or the nature of the CPDP approaches
themselves.

Internal Validity The internal validity of the study suffers to a small extent due to reliance
on the assumptions made in prior works. We have not tuned the hyper-parameters of the
decision tree but have instead relied on the evaluation settings similar to Herbold et al.
(2018). An interesting future work is to examine the effect of tuning model parameters on
the results.

8 Conclusion

Software engineering researchers often make claims about the generalization of the perfor-
mance of their techniques outside the contexts of evaluation. In this paper we investigate
whether conclusions in the area of defect prediction—the claims of the researchers—are
stable throughout time.

We show lack of conclusion stability for multiple techniques when they are evaluated at
different points in a project’s evolution. By following a time-aware methodology we found
out that conclusions regarding ranking and performance of techniques replicated by Herbold
et al. (2018) benchmarking study are not stable across different periods of time. With a
standard deviation of 0.05 or more in F-Score, MCC and G-measure, we find that with
context (i.e., time) of evaluation, the relative performance of defect prediction techniques
changes, provided the time frame and projects we used for evaluation.

Empirical Software Engineering (2020) 25:5047–5083 5079

However, it is hard to reason if time alone is the primary factor that leads to unstable
conclusions, but our empirical evaluation shows that it does seem to be a factor. There may
be other factors such as noise in the dataset, types of the projects, software development
process, or the nature of the CPDP approaches themselves that require further investigation
to determine their effect on conclusion stability.

This case study provides evidence that in the field of defect prediction the context of
evaluation (in our case, time) plays an important role. Therefore, it is imperative that empir-
ical software engineering researchers do not over generalize their results but instead couch
their claims of performance within the contexts of their evaluation—a field-wide faux pas
that perhaps even this paper engages in.

References

Amasaki S, Kawata K, Yokogawa T (2015) Improving cross-project defect prediction methods with data
simplification. In: 2015 41st euromicro conference on software engineering and advanced applications,
pp 96–103, https://doi.org/10.1109/SEAA.2015.25

Bangash AA (2020) Abdulali/replication-kit-emse-2020-benchmark: First release. https://doi.org/10.5281/
ZENODO.3715485

Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented design metrics as quality indicators.
IEEE Trans Softw Eng 22(10):751–761

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng
20(6):476–493

Cruz AEC, Ochimizu K (2009) Towards logistic regression models for predicting fault-prone code across
software projects. In: 2009 3rd international symposium on empirical software engineering and
measurement, pp 460–463, https://doi.org/10.1109/ESEM.2009.5316002

D’Ambros M, Lanza M, Robbes R (2012) Evaluating defect prediction approaches: a benchmark and an
extensive comparison. Empir Softw Eng 17(4-5):531–577

Ekanayake J, Tappolet J, Gall HC, Bernstein A (2009) Tracking concept drift of software projects using defect
prediction quality. In: 2009 6th IEEE international working conference on mining software repositories,
IEEE, pp 51–60

Ekanayake J, Tappolet J, Gall HC, Bernstein A (2012) Time variance and defect prediction in software
projects, vol 17. Springer, New York, pp 348–389

Fenton N, Neil M, Marsh W, Hearty P, Radlinski L, Krause P (2007) Project data incorporating qualitative
factors for improved software defect prediction. In: Third international workshop on predictor models in
software engineering PROMISE’07: ICSE workshops, vol 2007, pp 2-2, https://doi.org/10.1109/PROMI
SE.2007.11

Fischer M, Pinzger M, Gall H (2003) Populating a release history database from version control and bug
tracking systems. In: International conference on software maintenance, 2003. ICSM, proceedings IEEE,
vol 2003, pp 23–32

Hassan AE (2009) Predicting faults using the complexity of code changes. In: Proceedings of the 31st
international conference on software engineering, IEEE computer society, pp 78–88

Herbold S (2015) Crosspare: a tool for benchmarking cross-project defect predictions. In: 2015 30th
IEEE/ACM international conference on automated software engineering workshop (ASEW), IEEE,
pp 90–96

Herbold S (2017a) Sherbold/replication-kit-tse-2017-benchmark: Release of the replication kit
Herbold S (2017b) A systematic mapping study on cross-project defect prediction. arXiv:170506429
Herbold S, Trautsch A, Grabowski J (2018) A comparative study to benchmark cross-project defect predic-

tion approaches. IEEE Trans Softw Eng 44(9):811–833. https://doi.org/10.1109/TSE.2017.2724538
Hindle A, Onuczko C (2019) Preventing duplicate bug reports by continuously querying bug reports. Empir

Softw Eng 24(2):902–936
Huang Q, Xia X, Lo D (2017) Supervised vs unsupervised models: A holistic look at effort-aware just-in-

time defect prediction. In: 2017 IEEE international conference on software maintenance and evolution,
ICSME, IEEE, pp 159–170

Empirical Software Engineering (2020) 25:5047–50835080

https://doi.org/10.1109/SEAA.2015.25
https://doi.org/10.5281/ZENODO.3715485
https://doi.org/10.5281/ZENODO.3715485
https://doi.org/10.1109/ESEM.2009.5316002
https://doi.org/10.1109/PROMISE.2007.11
https://doi.org/10.1109/PROMISE.2007.11
http://arxiv.org/abs/170506429
https://doi.org/10.1109/TSE.2017.2724538

Jimenez M, Rwemalika R, Papadakis M, Sarro F, Le Traon Y, Harman M (2019) The importance of
accounting for real-world labelling when predicting software vulnerabilities. In: Joint european software
engineering conference and symposium on the foundations of software engineering ESEC/FSE

Jureczko M, Madeyski L (2010) Towards identifying software project clusters with regard to defect predic-
tion. In: Proceedings of the 6th international conference on predictive models in software engineering,
ACM, New York, NY, USA, PROMISE ’10, pp 9:1–9:10, https://doi.org/10.1145/1868328.1868342

Kamei Y, Fukushima T, McIntosh S, Yamashita K, Ubayashi N, Hassan AE (2016) Studying just-in-time
defect prediction using cross-project models. Empir Softw Eng 21(5):2072–2106

Koru AG, Liu H (2005) An investigation of the effect of module size on defect prediction using static
measures. SIGSOFT Softw Eng Notes 30(4):1–5. https://doi.org/10.1145/1082983.1083172

Krishna R, Menzies T (2018) Bellwethers: A baseline method for transfer learning. IEEE Transactions on
Software Engineering

Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classification models for software defect
prediction: a proposed framework and novel findings. IEEE Trans Softw Eng 34(4):485–496

Ma Y, Luo G, Zeng X, Chen A (2012) Transfer learning for cross-company software defect prediction. Inf
Softw Technol 54(3):248–256. https://doi.org/10.1016/j.infsof.2011.09.007

Martin R (1994) Oo design quality metrics-an analysis of dependencies. In: Proceeding workshop pragmatic
and theoretical directions in object-oriented software metrics, OOPSLA’94

McIntosh S, Kamei Y (2017) Are fix-inducing changes a moving target? a longitudinal case study of just-in-
time defect prediction. IEEE Trans Softw Eng 44(5):412–428

Menzies T, Di Stefano JS (2004) How good is your blind spot sampling policy. In: Eighth IEEE international
symposium on high assurance systems engineering, 2004. Proceedings, pp 129–138, https://doi.org/10.
1109/HASE.2004.1281737

Menzies T, DiStefano J, Orrego A, Chapman R (2004) Assessing predictors of software defects. In:
Proceeding workshop predictive software models

Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener A (2010) Defect prediction from static code
features: current results, limitations, new approaches. Autom Softw Eng 17(4):375–407

Menzies T, Butcher A, Marcus A, Zimmermann T, Cok D (2011) Local vs. global models for effort esti-
mation and defect prediction. In: 2011 26th IEEE/ACM international conference on automated software
engineering (ASE 2011), IEEE, pp 343–351

Mockus A, Weiss DM (2000) Predicting risk of software changes. Bell Labs Technical J 5(2):169–180
Morasca S, Ruhe G (2000) A hybrid approach to analyze empirical software engineering data and its

application to predict module fault-proneness in maintenance. J Syst Softw 53(3):225–237
Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In:

Proceedings of the 27th international conference on Software engineering, ACM, pp 284–292
Nam J, Kim S (2015) Clami: Defect prediction on unlabeled datasets (t). In: Proceedings of the 2015 30th

IEEE/ACM international conference on automated software engineering (ASE), IEEE computer society,
Washington, DC, USA, ASE ’15, pp 452–463, https://doi.org/10.1109/ASE.2015.56

Nam J, Pan SJ, Kim S (2013) Transfer defect learning. In: 2013 35Th international conference on software
engineering, ICSE, IEEE, pp 382–391

Peters F, Menzies T, Marcus A (2013) Better cross company defect prediction. In: Proceedings of the 10th
working conference on mining software repositories. IEEE Press, Piscataway, pp 409–418

Rahman F, Devanbu P (2013) How and why process metrics are better. In: 2013 35Th international
conference on software engineering, ICSE, IEEE, pp 432–441

Rakha MS, Bezemer C, Hassan AE (2018) Revisiting the performance evaluation of automated
approaches for the retrieval of duplicate issue reports. IEEE Trans Softw Eng 44(12):1245–1268.
https://doi.org/10.1109/TSE.2017.2755005

Romano J, Kromrey JD, Coraggio J, Skowronek J, Devine L (2006) Exploring methods for evaluating group
differences on the nsse and other surveys: Are the t-test and cohen’sd indices the most appropriate
choices. In: Annual meeting of the southern association for institutional research. Citeseer, Princeton,
pp 1–51

Śliwerski J, Zimmermann T, Zeller A (2005a) When do changes induce fixes? In: ACM Sigsoft software
engineering notes, ACM, vol 30, pp 1–5

Tan M, Tan L, Dara S, Mayeux C (2015) Online defect prediction for imbalanced data. In: 2015 IEEE/ACM
37Th IEEE international conference on software engineering, IEEE, vol 2, pp 99–108

Tang MH, Kao MH, Chen MH (1999) An empirical study on object-oriented metrics. In: Proceedings sixth
international software metrics symposium (Cat. No. PR00403), IEEE, pp 242–249

Tantithamthavorn C, McIntosh S, Hassan AE, Ihara A, Matsumoto K (2015) The impact of mislabelling
on the performance and interpretation of defect prediction models. In: 2015 IEEE/ACM 37Th IEEE
international conference on software engineering, IEEE, vol 1, pp 812–823

Empirical Software Engineering (2020) 25:5047–5083 5081

https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1145/1082983.1083172
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1109/HASE.2004.1281737
https://doi.org/10.1109/HASE.2004.1281737
https://doi.org/10.1109/ASE.2015.56
https://doi.org/10.1109/TSE.2017.2755005

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017) An empirical comparison of model
validation techniques for defect prediction models. IEEE Trans Softw Eng 43(1):1–18

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2018) The impact of automated parameter
optimization on defect prediction models. IEEE Transactions on Software Engineering

Turhan B (2012) On the dataset shift problem in software engineering prediction models. Empir Softw Eng
17(1-2):62–74

Turhan B, Menzies T, Bener AB, Di Stefano J (2009) On the relative value of cross-company and within-
company data for defect prediction. Empir Softw Eng 14(5):540–578

Watanabe S, Kaiya H, Kaijiri K (2008) Adapting a fault prediction model to allow inter languagereuse. In:
Proceedings of the 4th international workshop on predictor models in software engineering, ACM, New
York, NY, USA, PROMISE ’08, pp 19–24, https://doi.org/10.1145/1370788.1370794

Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques.
Morgan Kaufmann

Yang X, Lo D, Xia X, Zhang Y, Sun J (2015) Deep learning for just-in-time defect prediction. In: 2015 IEEE
International conference on software quality, reliability and security, IEEE, pp 17–26

Yang Y, Zhou Y, Liu J, Zhao Y, Lu H, Xu L, Xu B, Leung H (2016) Effort-aware just-in-time defect pre-
diction: simple unsupervised models could be better than supervised models. In: Proceedings of the
2016 24th ACM SIGSOFT international symposium on foundations of software engineering, ACM,
pp 157–168

Yap BW, Rani KA, Rahman HAA, Fong S, Khairudin Z, Abdullah NN (2014) An application of oversam-
pling, undersampling, bagging and boosting in handling imbalanced datasets. In: Proceedings of the first
international conference on advanced data and information engineering (DaEng-2013). Springer, New
York, pp 13–22

Zhang F, Mockus A, Keivanloo I, Zou Y (2014) Towards building a universal defect prediction model. In:
Proceedings of the 11th working conference on mining software repositories, ACM, pp 182–191

Zimmermann T, Nagappan N (2007) Predicting subsystem failures using dependency graph complexities.
In: The 18th IEEE international symposium on software reliability (ISSRE’07), IEEE, pp 227–236

Zimmermann T, Premraj R, Zeller A (2007) Predicting defects for eclipse. In: Third international workshop
on predictor models in software engineering (PROMISE’07: ICSE Workshops 2007), IEEE, pp 9–9

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process. In: Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering, ACM, pp 91–100

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Abdul Ali Bangash is a PhD student of Computing Science at the
University of Alberta. His research interest includes mining software
repositories, search-based software engineering, improving develop-
ment processes for software energy prediction and optimization, code
metrics and static analysis. Abdul received his Bachelors and Masters
degree in Computer Science from NUCES-FAST in Pakistan.

Empirical Software Engineering (2020) 25:5047–50835082

https://doi.org/10.1145/1370788.1370794

Hareem Sahar is a PhD student in the Department of Computing
Science at the University of Alberta. She completed her BS and MS
from FAST-NUCES Islamabad Pakistan. Her research encompasses
the development and evaluation of techniques and tools to improve
the software evolution and maintenance process.

Abram Hindle is an associate professor of Computing Science at
the University of Alberta. His research focuses on problems relating
to mining software repositories, improving software engineering-
oriented information retrieval with contextual information, the impact
of software maintenance on software energy consumption, and how
software engineering informs computer music. He likes applying
machine learning in music, art, and science. Sadly Abram has no
taste in music and produces reprehensible sounding noise using his
software development abilities. Abram received a PhD in computer
science from the University of Waterloo, and Masters and Bachelors
in Computer Science from the University of Victoria.

Karim Ali is an Assistant Professor in the Department of Comput-
ing Science at the University of Alberta. He received his PhD degree
from the University of Waterloo in 2014. His research interests are
in programming languages and software engineering, particularly in
scalability, precision, and usability of program analysis tools. His
work ranges from developing new theories for scalable and precise
program analyses to applications of program analysis in security and
Just-in-Time compilers.

Empirical Software Engineering (2020) 25:5047–5083 5083

	On the time-based conclusion stability of cross-project defect prediction models
	Abstract
	Introduction
	Related Work
	Methodology
	Select Techniques to Evaluate
	Extract Software Defect Prediction Metrics with Dated Releases
	Sort and Split Project Versions Into Time Buckets
	Generate Training-Test Pairs from Time Buckets
	Build Prediction Models and Evaluate Performance

	Experimental Setup
	Select Techniques to Evaluate
	Extract Software Defect Prediction Data Set with Dated Releases
	Sort and Split Project Versions Into Time Buckets
	Generate Train-Test Pairs from Time Buckets
	Build Prediction Models and Evaluate Performance

	Results
	RQ1: Are the cross-project defect prediction approaches stable in terms of their conclusions when evaluated over time?
	Motivation
	Result

	 RQ2: How do the results of time-agnostic and time-aware evaluations differ?
	Motivation
	Result

	RQ3: What is the ranking of evaluated techniques in time-aware experiment?
	Motivation
	Result

	Discussion
	Insights from Study
	Impact of Factors Other than Time on Conclusion Stability
	Impact of Projects Included in Tr-Test Set
	Impact of Data Size
	Impact of Data Imbalance

	Implications

	Threats to Validity
	Construct Validity
	External Validity
	Internal Validity

	Conclusion
	References

